

Chongqing University of Technology ATAI Advanced Technique of Artificial Intelligence

Artificial

Enhanced Multi-Channel Graph Convolutional Network for

Aspect Sentiment Triplet Extraction

Hao Chen, Zepeng Zhai, Fangxiang Feng, Ruifan Li, Xiaojie Wang School of Artificial Intelligence, Beijing University of Posts and Telecommunications, China {ccchenhao997, zepeng, fxfeng, rfli, xjwang}@bupt.edu.cn

code: https://github.com/CCChenhao997/EMCGCN-ASTE.

— ACL 2022

2022.10.15 • ChongQing

Chongqing University of ATAI AdvancAedvaTnecehdniqueof ArtificiTaelchnteqluliegeonce

Artificial

1.Introduction

2.Method

3.Experiments

Introduction

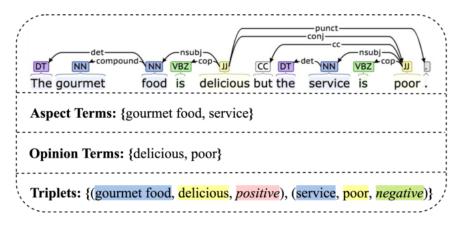


Figure 1: A sentence with its dependency tree is given to illustrate ASTE task. In the triplet set, aspect terms, opinion terms are highlighted in blue and yellow, respectively. The *positive* sentiment polarity is highlighted in red, while the *negative* in green. Given an input sentence $X = \{w_1, w_2, \dots, w_n\}$ with *n* words, the goal of our model is to output a set of triplets $\mathcal{T} = \{(a, o, s)_m\}_{m=1}^{|\mathcal{T}|}$ from the sentence *X*, where *a* and *o* denote aspect term and opinion term,

Introduction

#	Relation	Meaning
1	B-A	beginning of aspect term.
2	I-A	inside of aspect term.
3	А	word pair (w_i, w_j) belongs to the same aspect term.
4	B-O	beginning of opinion term.
5	I-O	inside of opinion term.
6	0	word pair (w_i, w_j) belongs to the same opinion term.
7	POS	w_i and w_j of the word pair (w_i, w_j) respectively belong to
8	NEU	an aspect term and an opinion term, and they form aspect-
9	NEG	opinion pair with positive/neutral/negative sentiment.
10	Ţ	no above relations between word pair (w_i, w_j) .

Table 1: The meanings of our defined ten relations. Note that these relations can also be seen as labels.

		~	net			3115		service is poor		
	The	gout	food	\$	delicit	put	ne	Servis	\$	Poor
The	T	T	T	⊥	T	T	T	⊥	T	T
gourmet	T	B-A	А	⊥	POS	T	T	⊥	T	T
food	T	Α	I-A	⊥	POS	T	⊥	⊥	⊥	T
is	T	⊥	T	⊥	⊥	T	⊥	⊥	⊥	T
delicious	T	POS	POS	⊥	B-O	T	⊥	⊥	⊥	T
but	T	⊥	T	\perp	⊥	T	T	⊥	T	T
the	T	T	T	⊥	T	T	T	Ŧ	T	T
service	T	T	T	T	T	T	T	B-A	T	NEG
is	T	T	T	T	T	T	T	T	T	T
poor	T	T	T	T	T	T	T	NEG	T	B-O

Figure 3: Table filling for triplet extraction in a sentence is illustrated. Each cell denotes a word pair with a relation or label. Refer Table 1 for definitions of relations.

1.How to utilize various relations between words to help ASTE task?2.How to utilize the linguistic features to help ASTE task?

ATA I Advanced Technique of Artificial

Introduction

The food is delicious												
	The	food	*	delicions		The	food	*	delicion			
The	DT-DT	DT-NN	DT-VBZ	DT-JJ		self	det	-	-			
food	NN-DT	NN-NN	NN-VBZ	NN-JJ		det	self	-	nsubj			
is	VBZ-DT	VBZ-NN	VBZ-VBZ	VBZ-JJ		-	-	self	cop			
delicious	DT-JJ	NN-JJ	VBZ-JJ	11-11		-	nsubj	cop	self			
	Part-o	of-Speecl	n Combi	nation		Synts	actic Dep	endency	Туре			
The	0	1	3	2		0	1	2	3			
food	1	0	2	1		1	0	1	2			
is	3	2	0	1		2	1	0	1			
delicious	2	1	1	0		3	2	1	0			
	т	ree-base	d Distan		Rela	tive Posi	tion Dis	tance				

Figure 4: Four types of features for a sentence.

1.How to utilize various relations between words to help ASTE task?2.How to utilize the linguistic features to help ASTE task?

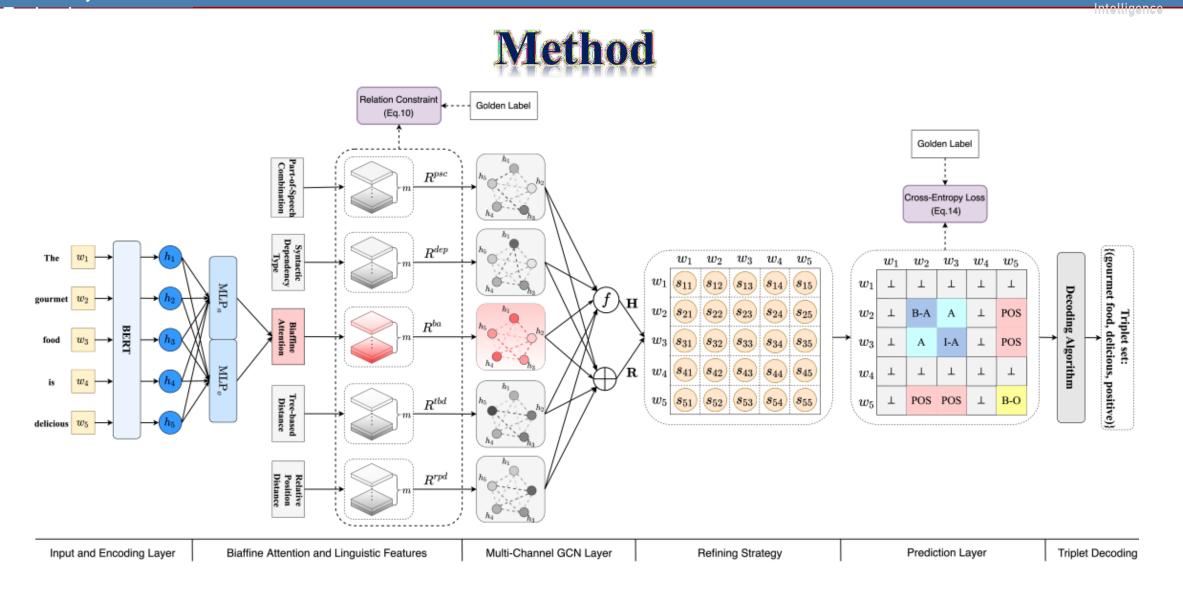


Figure 2: The overall architecture of our end-to-end model EMC-GCN.

Method

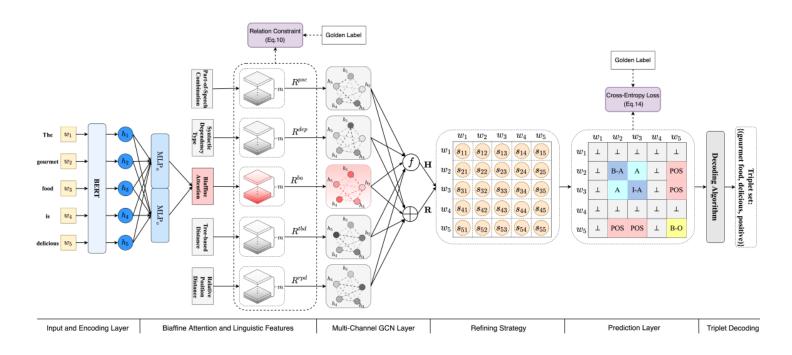


Figure 2: The overall architecture of our end-to-end model EMC-GCN.

Input and Encoding Layer.

$$X = \{w_1, w_2, ..., w_n\}$$
$$H = \{h_1, h_2, ..., h_n\}$$

Biaffine Attention Module

$$h_i^a = \mathrm{MLP}_a(h_i) \tag{1}$$

$$h_j^o = \mathrm{MLP}_o(h_j)$$
 (2)

$$g_{i,j} = h_i^{a \mathrm{T}} U_1 h_j^o + U_2 \left(h_i^a \oplus h_j^o \right) + b$$
 (3)

$$r_{i,j,k} = \frac{\exp(g_{i,j,k})}{\sum_{l=1}^{m} \exp(g_{i,j,l})}$$
(4)

 $R = \text{Biaffine}\left(\text{MLP}_a(H), \text{MLP}_o(H)\right)$ (5)

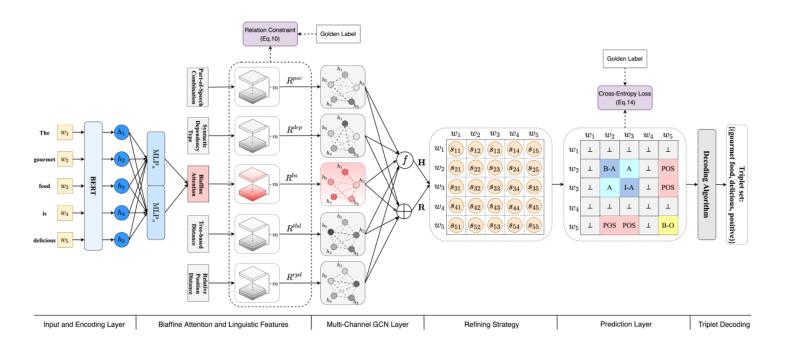


Figure 2: The overall architecture of our end-to-end model EMC-GCN.

Multi-Channel GCN

$$\widetilde{H}_{k}^{ba} = \sigma \left(R_{:,:,k}^{ba} H W_{k} + b_{k} \right) \tag{6}$$

$$\hat{H}^{ba} = f(\tilde{H}_1^{ba}, \tilde{H}_2^{ba}, ..., \tilde{H}_m^{ba})$$
(7)

Linguistic Features

ł

$$\mathbf{H} = f\left(\hat{H}^{ba}, \hat{H}^{psc}, \hat{H}^{dep}, \hat{H}^{tbd}, \hat{H}^{rpd}\right) \qquad (8)$$

$$\mathbf{R} = R^{ba} \oplus R^{psc} \oplus R^{dep} \oplus R^{tbd} \oplus R^{rpd}$$
(9)

where $\mathbf{H} = {\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_n}$ and $\mathbf{R} = {\mathbf{r}_{1,1}, \mathbf{r}_{1,2}, ..., \mathbf{r}_{n,n}}$ denote node representations and edge representations of word pairs.

Relation Constraint

$$\mathcal{L}_{ba} = -\sum_{i}^{n} \sum_{j}^{n} \sum_{c \in \mathcal{C}} \mathbb{I}(y_{ij} = c) \log(r_{i,j|c}) \quad (10)$$

Method

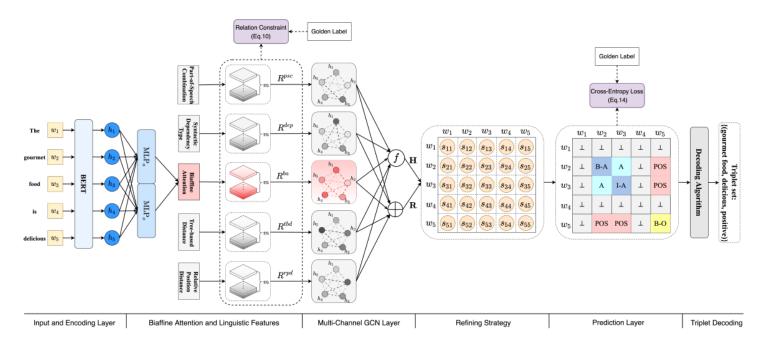


Figure 2: The overall architecture of our end-to-end model EMC-GCN.

Refining Strategy and Prediction Layer

$$s_{ij} = \mathbf{h}_i \oplus \mathbf{h}_j \oplus \mathbf{r}_{ij} \oplus \mathbf{r}_{ii} \oplus \mathbf{r}_{jj}$$
 (11)

$$p_{ij} = \operatorname{softmax}(W_p s_{ij} + b_p) \tag{12}$$

Loss Function

$$\mathcal{L} = \mathcal{L}_p + \alpha \mathcal{L}_{ba} + \beta \left(\mathcal{L}_{psc} + \mathcal{L}_{dep} + \mathcal{L}_{tbd} + \mathcal{L}_{rpd} \right) \quad (13)$$

$$\mathcal{L}_p = -\sum_{i}^{n} \sum_{j}^{n} \sum_{c \in \mathcal{C}} \mathbb{I}(y_{ij} = c) \log(p_{i,j|c}). \quad (14)$$

ATA I Advanced Technique of Artificial

Experiments

Dataset		14	res	14	4lap	1.	5res	16res		
		#S	#T	#S	#T	#S	#T	#S	#T	
	train	1,259	2,356	899	1,452	603	1,038	863	1,421	
\mathcal{D}_1	dev	315	580	225	383	151	239	216	348	
	test	493	1,008	332	547	325	493	328	525	
	train	1266	2338	906	1460	605	1013	857	1394	
\mathcal{D}_2	dev	310	577	219	346	148	249	210	339	
	test	492	994	328	543	322	485	326	514	

Table 2: Statistics for two groups of experiment datasets.

Model	14res			14lap			15res			16res		
WIOUEI	Р	R	F1									
Peng-two-stage+IOG	58.89	60.41	59.64	48.62	45.52	47.02	51.70	46.04	48.71	59.25	58.09	58.67
IMN+IOG	59.57	63.88	61.65	49.21	46.23	47.68	55.24	52.33	53.75	-	-	-
GTS-CNN	70.79	61.71	65.94	55.93	47.52	51.38	60.09	53.57	56.64	62.63	66.98	64.73
GTS-BiLSTM	67.28	61.91	64.49	59.42	45.13	51.30	63.26	50.71	56.29	66.07	65.05	65.56
S^3E^2	69.08	64.55	66.74	59.43	46.23	52.01	61.06	56.44	58.66	71.08	63.13	66.87
GTS-BERT	70.92	69.49	70.20	57.52	51.92	54.58	59.29	58.07	58.67	68.58	66.60	67.58
BMRC	-	-	70.01	-	-	57.83	-	-	58.74	-	-	67.49
Our EMC-GCN	71.85	72.12	71.98	61.46	55.56	58.32	59.89	61.05	60.38	65.08	71.66	68.18

Table 3: Experimental results on \mathcal{D}_1 (Wu et al., 2020a). All baseline results are from the original papers.

ATA I Advanced Technique of Artificial Intelligence

Experiments

Model	14res				14lap			15res			16res			
WIGUEI	Р	R	F1											
CMLA+ [‡]	39.18	47.13	42.79	30.09	36.92	33.16	34.56	39.84	37.01	41.34	42.10	41.72		
RINANTE+ [♯]	31.42	39.38	34.95	21.71	18.66	20.07	29.88	30.06	29.97	25.68	22.30	23.87		
Li-unified-R ^b	41.04	67.35	51.00	40.56	44.28	42.34	44.72	51.39	47.82	37.33	54.51	44.31		
Peng-two-stage ^b	43.24	63.66	51.46	37.38	50.38	42.87	48.07	57.51	52.32	46.96	64.24	54.21		
$OTE-MTL^{\dagger}$	62.00	55.97	58.71	49.53	39.22	43.42	56.37	40.94	47.13	62.88	52.10	56.96		
JET-BERT [♯]	70.56	55.94	62.40	55.39	47.33	51.04	64.45	51.96	57.53	70.42	58.37	63.83		
GTS - $BERT^{\dagger}$	68.09	69.54	68.81	59.40	51.94	55.42	59.28	57.93	58.60	68.32	66.86	67.58		
BMRC^\dagger	75.61	61.77	67.99	70.55	48.98	57.82	68.51	53.40	60.02	71.20	61.08	65.75		
$\mathbf{B}\mathbf{A}\mathbf{R}\mathbf{T}$ - $\mathbf{A}\mathbf{B}\mathbf{S}\mathbf{A}^{\dagger}$	65.52	64.99	65.25	61.41	56.19	58.69	59.14	59.38	59.26	66.60	68.68	67.62		
Our EMC-GCN	71.21	72.39	71.78	61.70	56.26	58.81	61.54	62.47	61.93	65.62	71.30	68.33		

Table 4: Experimental results on \mathcal{D}_2 (Xu et al., 2020). The " \natural " denotes that results are retrieved from Xu et al. (2020). The " \dagger " means that we reproduce the models using released code with original parameters on the dataset.

Model	14res	14lap	15res	16res
EMC-GCN	71.78	58.81	61.93	68.33
w/o Ten Relations	70.68	57.71	59.85	66.48
w/o Linguistic Features	71.22	58.38	60.62	67.15
w/o Relation Constraint	70.59	57.28	59.83	67.89
w/o Refining Strategy	70.62	56.72	60.23	67.31

Table 5: F1 scores of ablation study on \mathcal{D}_2 .

Thank you!